Compiling Array Languages for SIMD

V. E. McHale
February 8, 2025

Abstract

The C compilation model has dominated compilers literature but it
opposes Single-Intruction, Multiple Data (SIMD). We articulate the as-
sumptions behind textbook methods, where new CPUs diverge, and give
a first cut of a better approach used in the Apple Array System. By re-
considering expectations about compiler optimization, we give a program
for high-level languages to offer performant SIMD. Array languages turn
out to be an especially good candidate, expressing efficient operations in
a high-level language; we give examples in Apple.

Contents

|1 _Background 1
[[1 Textbook Compilation] v v v v v v v it e e 1
1.2 Functions in Theory| 2
[3 Timits of Cl o o 3

[2__Efficient Compilation| 3
2.1 Typing & Indexing| Lo oo 4

13 A First Cut at a Solution for the Apple Array System| 6
3.1 Map| e 6
B2 _Foldl o 7

1 Background

1.1 Textbook Compilation

C implementations compile the language’s constructs (functions) to sequences
of steps in assembly which read and write registers for arguments and return
values defined by convention. The correspondence is elegant EL but not suited
to SIMD.

Consider a compiler written as mutually recursive functions:

1Kell points out that C is uniquely suited to interfacing with other languages, in part
because of this compilation practice.

writeExpr :: Expr -> Temp -> [Stmt]
writeFn :: Expr -> [Temp] -> Temp -> [Stmt]

The first function takes an expression and a register and creates a series of
statements that will write that its value to the given register. The second takes
an expression representing a function, registers to read arguments from, and a
register to write the return value, and returns a series of statements. This is
used in Appel [I][pp. 148-169], for instance.

Na’l'velyﬂ we might try to compile Aas. map (Ax. f x) as, which maps
over a vector, as follows:

¢ Generate temporaries x, y for the argument and return value of f, respec-
tively.

e Compile Ax. f x to fsteps using writeFn.
o Generate code to loop over the input vector’s elements; within the loop:

— Generate code to read from the input array at the current index,
putting the value in x

— Place the statements fsteps

— Append code to store the result y in the output array.

This is appealing because of its simplicity, and also has the advantage that
f can be defined in another language. However in the case of

Aas. map (Ax. x*2) as

it would step over the input vector’s elements one at a time. This is not
as efficient as it could be—SIMD instructions can multiply several elements
at once. Thus compiling map should not resort to a single canonical compiled
version of .

1.2 Functions in Theory

Landin [5] points out that Algol corresponds to the lambda calculus. Functions
in the lambda calculus have a formal definition and are applicable to program-
ming in practice, but only some have efficient SIMD implementations: Ax. 1-
x*2 and if x20 then x else 0 are both functions but the latter involves a
conditional which in general is compiled to a jump; they must be treated differ-
ently during compilation but are not distinguished in the source language.

Cataloguing which functions can be compiled with vector instructions would
be a welcome contribution to the compilers literature.

2This was the approach taken in the Apple array system at first.

1.3 Limits of C

What makes C special in practice is that functions, which can be composed, are
compiled to sequences of assembly instructions stored in object files; composi-
tionality is borne through until linking. This compositionality is at odds with
SIMD, where a high-level function Ax. x*2 should be compiled using different
instructions depending on whether it is lifted to operate on an array. macOS
provides

float expf(float x);
vFloat vexpf(vFloat x);
void vvexpf(float *y, const float *x, const int *n);

as three shared library functions to address this. A library providing a sig-
moid function (for instance) would need to expose three versions in a shared
library. The clumsiness proliferates and the mathematical entity no longer cor-
responds to compiled code but rather three versions of itself depending on the
context in which it is used.

A compiler-as-a-library is appealing because it could be invoked by another
compiler, dispatching different versions of a function without intervention from
the programmer. Alternately new formats for object files could include several
versions of a function, with information that other languages’ compilers could
use to pick the appropriate implementation.

2 Efficient Compilation

The full employment theorem for compiler writers states that it is impossible to
write an algorithm that transforms an arbitrary program into an optimal ver-
sion. Of course, such a “big hammer” would be handy, but the problem sitting
before us is narrower. A compiler ferries a (possibly high-level) language to ef-
ficient code, and actually a source language with fewer low-level facilities offers
more invariants. “Optimization” writ large gets much attention, but transfor-
mations that make high-level languages possibleﬂhave not entered the computer
science canon, particularly for functional or exotic languages.

“Amenability to efficient compilation” also informs the design of the source
language. One can also consider languages where the programmer can expect
efficient compilation by reasoning about the source-language in its own terms.
This is not the case for C++4-, where efficiency of generated code can vary dra-
matically by compiler or across versions of the same compiler [6], 4] [2]. There is
no contract with the user; performance depends on internals that are not docu-
mented, justified, analyzed with the same scrutiny as programming languages.

Array languages have a chance to do better since they naturally express
computations that can be executed via SIMD, in a domain where such CPU
features offer significant gains.

3Without deforestation, fold (+) 8 [1..1000] would build up the whole list [1..1000] in
memory (in a strict language) [8]—deforestation is necessary for this style with higher-order
functions to stand toe-to-toe with a direct implementation.

2.1 Typing & Indexing

Suppose we wish to compute the 7-day moving average. We will do so using
\", inspired by J’s infix [7], which lifts a vector function to operate on win-
dows of 7-vectors, arranging the (scalar) results into a vector. Examining type
annotations, we see that the fold of the inner loop (/) is inferred have type
(float » float > float) » Vec 7 float > float:

> zann Axs. [(+)/x%R(:x)I\ 7 xs
A(xs : Vec (i + 7) float).
((\"7 : (Vec 7 float » float) > Vec (i + 7) float » Vec (i + 1) float)
A(x : Vec 7 float).
((% : float > float » float)
((/ : (float > float > float) > Vec 7 float > float)
(+ : float » float > float)
(x : Vec 7 float))
((R : int » float) ((: : Vec 7 float » int) (x : Vec 7 float))))
(xs : Vec (i + 7) float))

and in fact the inner loop is compiled without parity checks:

> tasm Axs. [(+)/x%R(:x)I\ 7 xs

ldr d2, [sp, x2, LSL #3]

fadd d5, d5, d2

add x4, x4, #0x1
apple_1:

mov x2, #0x10

add x2, x2, x4, LSL #3

1dr g2, [sp, x2]

fadd v3.2d, v3.2d, v2.2d

add x4, x4, #0x2

cmp x4, x3

b.LT apple_1

faddp d2, v3.2d

fadd d5, d5, d2

Compare the code generated to compute the average of a vector of unspeci-
fied size; note the thz x1, #0, apple_0 to handle the case when the elements
cannot be divided exactly into vector registers.

> sty [(+)/x%R(:x)]
Vec (i + 1) float » float
> zasm [(#)/x%R(:x)]

ldr d3, [x2], #0x8
eor v2.16b, v2.16b, v2.16b

mov x4, #0x1
cmp x4, x3
b.GE apple_1

sub x1, x3, #0x1
tbz x1, #0, apple_0
1dr d0, [x2], #0x8
fadd d3, d3, do

add x4, x4, #0x1

apple_0:
cmp x4, x3
b.GE apple_1

1dr g0, [x2], #0x10
fadd v2.2d, v2.2d, v0.2d
add x4, x4, #0x2

cmp x4, x3
b.LT apple_0
apple_1:

faddp dO, v2.2d
fadd d3, d3, do

Similar analyses are already performed by industrial compilers, but types
are part of the source language and thus available to any programmer who
knows the language—contrast autovectorization in C++4-, which is a matter for
compiler experts. Moreover, type systems, unlike compiler internals, are not
subject to change between versions.

In a type system with shapes, dimension information proliferates (based on
rules). As an example, in the Apple expression

Awh.Awo.Abh.Abo.
{ X - ((0,0),(0,1>,(1,0),(1,1>);
Y ¢« (0,1,1,0);
e [(#)/o x yl;
sigmoid « [1%(1+e:(_x))];
sDdx ¢ [xx(1-x)1;
ho - sigmoid {0} ([(+) (bh::Vec 2 float) x]'X%.wh);
prediction -~ sigmoid .. (+bo)'ho%:wo;
11E ¢ (-)'Y prediction;
114 ~ (%) (sDdx'prediction) 11E;
he ¢ 11A (*)® wo;
hA — (*)°{0,0} (sDdx {0} ho) he;
wha ¢ (+) {0,0} wh (|:X%.hA);
woa ¢ (+) wo (]:ho%:11A);

bha ¢« £ {0,1} bh hA;
boa « X bo 114;
(wha,woa,bha,boa)

}

all dimensions are known to the compiler, with only one type annotation
and X, Y being supplied as constants. The programmer can verify this in the
Apple array system with

> ann xor

and supply hints as type annotations if necessary or desired. This mode
of interaction is entirely absent from industrial compilers—optimizations are
confined to compiler internals, at best one can dump information and then
adjust flags or add pragmas. These are peculiarities of the compiler rather than
language, and the user’s control of the compilation output is indirect.

3 A First Cut at a Solution for the Apple Array
System

SIMD in the Apple array system is not God-anointed but provides a starting
example for array compiler authors.

3.1 Map
Apple adds functions

write2 :: Expr -> Temp2 -> [Stmt]

writeFn2 :: Expr -> [Temp2] -> Temp2 -> [Stmt]

which compile expressions such as Ax. x*2 to statements operating on vector
registers.
Then, when compiling, say, map f, we use

hasSIMD :: Expr -> Bool

to determine whether f can operate on vector registers. hasSIMD traverses
the AST, returning False when, say, log is found. If the function has a SIMD
implementation:

¢ Generate temporaries x0, y0 and vector temporaries x, y for arguments
and return values of f, respectively.

e Compile Ax. f x twice, once with writeFn and once with writeFn2.

o Generate code to loop over the input array, increasing index by 2 each
time; within the loop

— Generate code to read two values from the input array at the current
index, storing in x

— Place the statements fsteps2
— Append code to store the two result values in y in the output array.
o Generate code to conditionally execute if there is still one element remain-
ing in the input array after iterating by 2. Inside the conditional:
— Generate code to read x from the input array.
— Place the statements fsteps

— Append the code to store the result y in the output array.

If the function does not have a SIMD implementation, we fall back on com-
piling map as described in

3.2 Fold

Suppose we are compling fold (Ax.Ay. op x y) seed. At a high level, the
Apple array system attempts a SIMD implementation as follows:

e Determine how to seed the vector register from a scalar value by inspecting
op. For instance, in the case of max, we fill all elements of the vector
accumulator acc with the scalar seed; in the case of (+), we zero the
vector accumulator and then write the seed value to one of its elements.

o Iterate over the input array by 2, reading to the vector argument x and
executing fsteps2 = writeF2 op [x, acc] acc to update the vector ac-
cumulator.

e Combine the elements of the vector accumulator using op, writing the
result to the return register t. Often there is a specialized instruction, e.g.
faddp, haddpd, fmaxp.

o If there is still one remaining element after iterating by 2, read it a register
x0 and update the return register by executing fsteps = writeF op [x0, t] t

The Apple array system defines the helper functions:

seedVector :: Expr -> Maybe (FTemp -> F2Temp -> [Stmt])

combine :: Expr -> F2Temp -> FTemp -> [Stmt]

seedVector generates a sequence of Stmts to seed a given vector register
from a value in a register when possible. If the operation is not recognized, we
give up and return Nothing.

combine generates code to apply op to the vector elements of a given register,
writing the result to a specified register.

Acknowledgments

Thanks to Marshall Lochbaum for suggested improvements.

References

1]

2]

Andrew Appel. Modern Compiler Implementation in ML. Cambridge Uni-
versity Press, 1998.

hl3mukkel. Why does this code snippet produce radically different assembly
code in ¢ and c++7 |https://stackoverflow.com/q/48837118/11296354,
2018.

Stephen Kell. Some were meant for c¢: the endurance of an unmanageable
language. In Proceedings of the 2017 ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! 2017, page 229-245, New York, NY, USA, 2017.
Association for Computing Machinery.

Marek Kolodziej. Matrix multiplication on cpu. https://marek.ai/
matrix-multiplication-on-cpu.html, 2019.

P. J. Landin. Correspondence between algol 60 and church’s lambda-
notation: part i. Commun. ACM, 8(2):89-101, February 1965.

Dan Luu. Assembly v. intrinsics. https://danluu.com/
assembly-intrinsics/|, October 2014.

Bob Therriault, Henry Rich, and Ian Clark. Vocabulary/bslash. |https:
//code.jsoftware.com/wiki/Vocabulary/bslash, 2023.

Philip Wadler. Deforestation: transforming programs to eliminate trees.
Theoretical Computer Science, 73(2):231-248, 1990.

https://stackoverflow.com/q/48837118/11296354
https://marek.ai/matrix-multiplication-on-cpu.html
https://marek.ai/matrix-multiplication-on-cpu.html
https://danluu.com/assembly-intrinsics/
https://danluu.com/assembly-intrinsics/
https://code.jsoftware.com/wiki/Vocabulary/bslash
https://code.jsoftware.com/wiki/Vocabulary/bslash

	Background
	Textbook Compilation
	Functions in Theory
	Limits of C

	Efficient Compilation
	Typing & Indexing

	A First Cut at a Solution for the Apple Array System
	Map
	Fold

