
Streaming Compression via Laziness

V. E. McHale

July 18, 2024

Abstract

Lazy data structures offer an elegant interface to streaming compres-
sion. However, compression libraries are implemented in C and work by
effects (memory writes). Monadic I/O is the blessèd way to handle effects
in Haskell, but can induce unwanted strictness in the resulting stream. We
step through how to recover streaming via lazy lists for the LZ4 compres-
sion library, and show off some of the sophisticated facilities for interfacing
C and Haskell. The case of streaming from a C API provides a nontrivial
example of juggling effects and laziness.

1 Introduction

Compression libraries compress and decompress in constant memory, taking
input in chunks. A nice API in Haskell would be:

compress, decompress

:: [ByteString] -> [ByteString]

This would certainly be possible to write in pure Haskell—the resulting
stream depends only on the input stream.

Typical C APIs, on the other hand, provide procedures with side effects.
Haskell has elegant and capable support for working with effects, via the famous
I/O monad [4][5]. However, using only the monadic interface to I/O makes the
(:) constructor of the output list strict—a streaming failure.

2 I/O in Haskell

GHC defines IO by passing around a RealWorld#1 token [2], viz.

newtype IO a =

IO (RealWorld# -> (# RealWorld#, a #))

This is a monad. It forces sequencing by chaining flatness.

1The octothorpe # at the end of the identifier indicates it is flat; (# _, _ #) is a flat tuple.

1

(>>=) :: IO a -> (a -> IO b) -> IO b

(IO m) >>= g = IO (\s ->

case m s of (# s’, a #) ->

(\(IO x) -> x) (g a) s’)

The result (of type IO b) depends on the state token returned by m and the
argument of type a passed to g—associated actions will be performed in order.

However, this definition admits more than just the monadic interface! For
instance we can define:

unsafeInterleaveIO :: IO a -> IO a

unsafeInterleaveIO (IO f) = IO $ \s ->

case f s of {(# _, a #) -> (# s, a #)}

This is immoral—it discards the RealWorld#—but it foreshadows the sort
of state token manipulations that are possible.

2.1 ST Monad

The token passed to ensure ordering of effects need not be the RealWorld#; the
ST monad [3] cleverly forbids state from escaping,2 viz.

newtype ST s a =

ST (State# s -> (State# s, a))

There is also a lazier variant,

newtype LazyST s a =

LazyST (State s -> (State s, a))

where

data State s = State (State# s)

In this case state actions are deferred until the result is forced.

3 Modern C Bindings

We will use c2hs [1], a Haskell source preprocessor which reads C header files
and generates imports with the corresponding Haskell types. We will also follow
Edward Z Yang’s advice to baptize Ptrs as ForeignPtrs so that we do not have
to worry about explicitly freeing them later on [6]. This is especially welcome
in our case, as it avoids the need to interleave calls to free while accounting for
its side effects.

2runST has type forall s. ST s a -> a and so no part of the state s can be returned—the
type variable is not in scope on the right side of the arrow!

2

4 LZ4 C API

Here is a simplified LZ4 C API:

typedef size_t LZ4F_errorCode_t;

typedef struct LZ4F_dctx_s LZ4F_dctx;

typedef LZ4F_dctx* LZ4F_decompressionContext_t;

typedef struct {

...

} LZ4F_decompressOptions_t;

LZ4F_errorCode_t

LZ4F_createDecompressionContext

(LZ4F_dctx** dctxPtr);

LZ4F_errorCode_t

LZ4F_freeDecompressionContext(LZ4F_dctx* dctx);

size_t LZ4F_decompress(LZ4F_dctx* dctx,

void* dstBuffer, size_t* dstSizePtr,

const void* srcBuffer, size_t* srcSizePtr,

const LZ4F_decompressOptions_t* dOptPtr);

To decompress data:

1. Create a decompression context dctx.

2. Feed a chunk of input data to LZ4F_decompress and read out decom-
pressed data (srcBuffer and srcSizePtr). The return value, of type
size_t tells us how many bytes of input were decompressed; we may need
to feed it to the decompressor incrementally.

3. Repeat (2) with each remaining chunk of our data.

4. Free the decompression context.

4.1 C2hs

The corresponding c2hs:

type LZ4FErrorCode = CSize

{# typedef LZ4F_errorCode_t LZ4FErrorCode #}

data LzDecompressionCtx

{# pointer *LZ4F_dctx as LzDecompressionCtxPtr

foreign finalizer LZ4F_freeDecompressionContext

3

as ^

-> LzDecompressionCtx #}

{# fun LZ4F_createDecompressionContext as ^

{ alloca- ‘Ptr LzDecompressionCtx’ peek*

} -> ‘LZ4FErrorCode’

#}

data LzDecompressOptions

{# pointer *LZ4F_decompressOptions_t

as LzDecompressOptionsPtr

-> LzDecompressOptions #}

{# fun LZ4F_decompress as ^

{ ‘LzDecompressionCtxPtr’

, castPtr ‘Ptr a’

, castPtr ‘Ptr CSize’

, castPtr ‘Ptr b’

, castPtr ‘Ptr CSize’

, ‘LzDecompressOptionsPtr’

} -> ‘CSize’ coerce

#}

This uses several advanced features worth mentioning. First,

{# pointer *LZ4F_dctx as LzDecompressionCtxPtr

foreign finalizer LZ4F_freeDecompressionContext

as ^

-> LzDecompressionCtx #}

defines LzDecompressionCtxPtr on the Haskell side as

type LzDecompressionCtxPtr

= ForeignPtr LzDecompressionCtx

C2hs will generate code so that functions taking a *LZ4F_dctx as an argu-
ment have a wrapper taking a ForeignPtr on the Haskell side. It also generates
code to import
LZ4F_freeDecompressionContext as a finalizer.

{# fun LZ4F_createDecompressionContext as ^

{ alloca- ‘Ptr LzDecompressionCtx’ peek*

} -> ‘LZ4FErrorCode’

#}

also deserves commentary. The C procedure
LZ4F_createDecompressionContext uses destination-passing style to be able

4

to return both an error and a pointer to the newly created compressor. However,
Haskell has tuples, a more fluent way of returning multiple values. C2hs will
generate a wrapper for us of type:

lZ4FCreateCompressionContext ::

IO (LZ4FErrorCode, Ptr LzCtx)

4.2 First Cut

The following uses the C API to decompress chunks into a list of ByteStrings.
It takes place in the IO monad, passing around a RealWorld# token, because
this is what GHC supports for foreign function calls.3

decompress :: [ByteString]

-> [ByteString]

decompress bss = unsafePerformIO $ do

(ctx, buf) <- do

(_, preCtx) <- lZ4FCreateDecompressionContext

ctx <- castForeignPtr

<$> newForeignPtr lZ4FFreeCompressionContext

(castPtr preCtx)

dstBuf <- mallocForeignPtrBytes bufSz

pure (ctx, dstBuf)

loop ctx buf bss

where

bufSz :: Integral a => a

bufSz = 32 * 1024

loop :: LzDecompressionCtxPtr

-> ForeignPtr a

-> [BS.ByteString]

-> IO [BS.ByteString]

loop _ _ [] = pure []

loop ctx buf (b:bs’) = do

(nxt, res) <- stepChunk ctx buf b

case nxt of

Nothing -> (res:) <$> loop ctx buf bs’

Just next -> (res:) <$> loop ctx buf (next:bs’)

stepChunk :: LzDecompressionCtxPtr

-> ForeignPtr a

-> BS.ByteString

-> IO (Maybe BS.ByteString

3C2hs also requires IO; for instance in wrapping the destination-passing style it enlists
alloca :: Storable a => (Ptr a -> IO b) -> IO b.

5

, BS.ByteString

)

stepChunk !ctx !dst b =

BS.unsafeUseAsCStringLen b $ (buf, sz) ->

withForeignPtr dst $ \d ->

alloca $ \dSzPtr ->

alloca $ \szPtr -> do

poke dSzPtr (fromIntegral bufSz)

poke szPtr (fromIntegral sz)

_ <- lZ4FDecompress

ctx d dSzPtr buf szPtr nullPtr

bRead <- fromIntegral <$> peek szPtr

bWritten <- peek dSzPtr

outBs <- BS.packCStringLen

(castPtr d, fromIntegral bWritten)

let remBs = if bRead == sz

then Nothing

else Just (BS.drop bRead b)

pure (remBs, outBs)

We see from profiling information in Figure 1 that streaming fails.

lz4-mem (Tue May 7 15:14 2024)

by
te

s

seconds

0

5M

10M

15M

20M

25M

30M

35M

40M

45M

50M

55M

60M

65M

70M

75M

80M

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

ARR_WORDS

(trace elements)

Figure 1: Näıve loop

This makes sense; (:) occurs modulo the IO monad—evaluating even the
head of the resulting list means performing all effects. The decompressor will
loop through all steps, i.e. all input will be fed in before the first chunk is read
off.

To get streaming behavior we shoehorn the procedure into the LazySTmonad.

6

As we shall see, the LazyST monad works well with the ST monad; we can keep
islands of strict effect management embedded in the LazyST monad.

4.3 Streaming Compression

decompress :: [BS.ByteString]

-> [BS.ByteString]

decompress bss = runST $ do

(ctx, buf) <- LazyST.unsafeIOToST $ do

(_, preCtx) <- lZ4FCreateDecompressionContext

ctx <- castForeignPtr

<$> newForeignPtr lZ4FFreeCompressionContext

(castPtr preCtx)

dstBuf <- mallocForeignPtrBytes bufSz

pure (ctx, dstBuf)

loop ctx buf bss

where

bufSz :: Integral a => a

bufSz = 32 * 1024

loop :: LzDecompressionCtxPtr

-> ForeignPtr a

-> [BS.ByteString]

-> LazyST.ST s [BS.ByteString]

loop _ _ [] = pure []

loop ctx buf (b:bs’) = do

(nxt, res) <- stepChunk ctx buf b

case nxt of

Nothing -> (res:) <$> loop ctx buf bs’

Just next -> (res:) <$> loop ctx buf (next:bs’)

stepChunk :: LzDecompressionCtxPtr

-> ForeignPtr a

-> BS.ByteString

-> LazyST.ST s (Maybe BS.ByteString

, BS.ByteString

)

stepChunk !ctx !dst b = LazyST.unsafeIOToST $

BS.unsafeUseAsCStringLen b $ (buf, sz) ->

withForeignPtr dst $ \d ->

alloca $ \dSzPtr ->

alloca $ \szPtr -> do

poke dSzPtr (fromIntegral bufSz)

poke szPtr (fromIntegral sz)

_ <- lZ4FDecompress

ctx d dSzPtr buf szPtr nullPtr

7

bRead <- fromIntegral <$> peek szPtr

bWritten <- peek dSzPtr

outBs <- BS.packCStringLen

(castPtr d, fromIntegral bWritten)

let remBs = if bRead == sz

then Nothing

else Just (BS.drop bRead b)

pure (remBs, outBs)

The unsafeIOToST deserves comment. It is defined as:

unsafeIOToST :: IO a -> LazyST s a

unsafeIOToST = strictToLazyST . unsafeIOToST

unsafeIOToST converts an IO action to a strict ST action; both use state
token-passing and we coerce a RealWorld# into a State# s.

strictToLazyST is more interesting. It embeds strict ST actions in the
LazyST monad—sequences of actions can be chained as dependencies, which
will be performed all together when the final result is demanded in the LazyST
monad.

strictToLazyST :: ST s a -> LazyST s a

strictToLazyST (ST m) = LazyST $ \(State s) ->

case m s of

(# s’, a #) -> (a, State s’)

This takes a State# s and wraps it in a State; the ST action will only
be performed when its result is demanded. However, since the state token is
obtained by wrapping the last state token of the strict ST action, evaluating
the result in the LazyST monad will perform all effects defined in the strict ST
monad.

Consider our own code:

LazyST.unsafeIOToST $ do

...

_ <- lZ4FDecompress

ctx d dSzPtr buf szPtr nullPtr

bRead <- fromIntegral <$> peek szPtr

bWritten <- peek dSzPtr

outBs <- BS.packCStringLen (castPtr d, fromIntegral bWritten)

This cannot take place wholly in the LazySTmonad; the result of lZ4FDecompress
is never demanded but we need to guarantee it is called before outBSs is read.
On the other hand, by converting the block to a LazyST action, none of the ef-
fects will take place until outBs is demanded. We have placed LazyST.unsafeIOToST
precisely at stepChunk above.

Thus, inspecting the first decompressed chunk will entail one call to lZ4FDecompress,
not the whole loop.

And in fact, this works: we can see from profiling information (Figure 2)
that memory use has gone from megabytes to kilobytes.

8

lz4-mem (Tue May 7 15:15 2024)
by

te
s

seconds

0

20k

40k

60k

80k

100k

120k

140k

160k

180k

200k

0 0.0050.01 0.0150.02 0.0250.03 0.0350.04 0.0450.05 0.0550.06 0.0650.07 0.0750.08 0.0850.09

ARR_WORDS

STACK

ghc-prim:GHC.Types.:

MUT_ARR_PTRS_CLEAN

base:GHC.IO.Buffer.Buffer

base:GHC.IO.Handle.Types.Handle__

(trace elements)

Figure 2: Streaming in the lazy ST monad

5 Acknowledgments

The above is not new. Duncan Coutts used lazy ByteStrings for compression
APIs in 2006, and the use of the LazyST monad comes from studying Herbert
Valerio Riedel’s code.

References

[1] Manuel M. T. Chakravarty. C −→haskell, or yet another interfacing tool.
In Pieter Koopman and Chris Clack, editors, Implementation of Functional
Languages, pages 131–148, Berlin, Heidelberg, 2000. Springer Berlin Heidel-
berg.

[2] Simon Peyton Jones. Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in haskell. NATO SCI-
ENCE SERIES SUB SERIES III COMPUTER AND SYSTEMS SCI-
ENCES, 180:47–96, 2001.

[3] John Launchbury and Simon L. Peyton Jones. Lazy functional state threads.
SIGPLAN Not., 29(6):24–35, jun 1994.

[4] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991. Selections from 1989 IEEE Symposium on
Logic in Computer Science.

[5] Philip Wadler. Monads for functional programming. In Manfred Broy, editor,
Program Design Calculi, pages 233–264, Berlin, Heidelberg, 1993. Springer
Berlin Heidelberg.

9

[6] Edward Z Yang. Principles of ffi api design. http://blog.ezyang.com/

2010/06/principles-of-ffi-api-design/, 2010.

10

http://blog.ezyang.com/2010/06/principles-of-ffi-api-design/
http://blog.ezyang.com/2010/06/principles-of-ffi-api-design/

	Introduction
	I/O in Haskell
	ST Monad

	Modern C Bindings
	LZ4 C API
	C2hs
	First Cut
	Streaming Compression

	Acknowledgments

