
Garbage Collection Enables Perenniality

V. E. McHale

13 Aug. 2021

Abstract

The choice of whether to include garbage collection in a language is
also a choice of type system. Garbage collected languages correspond to
classical, intuitionist logic and no language without garbage collection can
properly support classical logic; perenniality divides logics where garbage
collection divides languages.

Functional programming corresponds to intuitionistic logic via Curry-Howard;
linear logic corresponds to functional programming without a garbage collector
(Lafont 1988). The intuitionistic typing in garbage-collected languages features
the perenniality characteristic of mathematical logic (Girard 2011, 331).

This perenniality is absolutely essential for a logic to have any flavor of math-
ematics, where proofs build up to theorems which are eternal truths; proofs
make free use of previous theorems and theorems stand on their own: there is
no obligation to consume results later.

Programming Languages

We can see the flavor of ‘’perenniality” concretely in programming languages.
While linear logic departs substantially from mathematical logics, imperative
programming and functional programming are mutually familiar.

Linear Types

As a concrete example of how linear types allow us to work without a garbage
collector, we can use ATS:

...
{

val (pf | p) = bytearray_zero(40)
val () = bytearray_set(pf | p, 6, 1)

1



val () = bytearray_free(pf | p)
}
...

Had we tried to modify array contents after the byte array was freed, the program
would be ill-typed and would fail to compile.

...
{

val (pf | p) = bytearray_zero(40)
val () = bytearray_free(pf | p)
val () = bytearray_set(pf | p, 6, 1)

}
...

would be rejected by the compiler as bytearray_set(pf | ...) cannot be
assigned a type because the type judgment for pf has already been consumed
assigning a type to bytearray_free(...) (freeing a block of memory consumes
the typing judgment).

Linearity also ensures that the program is memory-clean:

...
{

val (pf | p) = bytearray_zero(40)
val () = bytearray_set(pf | p, 6, 1)

}
...

would be ill-typed because pf is not consumed. The type of a heap-allocated
value cannot be perennial: it tracks the lifetime of the value over the course of
program execution.

Perennial Type Systems

In Haskell one can write:

repeat :: a -> [a]
repeat x = let xs = x : xs in xs

take :: Int -> [a] -> [a]
take 0 _ = []
take n (x:xs) = x : take (n-1) xs

finiteList :: [Int]
finiteList = take 10 $ repeat 1

2



(take is not linear; take 0 _ = [] discards one of its arguments)
Practically, this program works because of garbage collection; the typing is
intuitionistic but calling finiteList will not leak memory despite abandoning
values.

Confused Type Systems

C has a confused type system: typing behaves like a perennially typed language,
but does not fulfill its part of the promise. A value of type float * may be a
pointer to an array of floats or it may be a pointer to garbage.

...
float* p = malloc(40);
free(p);
*p = 4.0;
...

will compile without any error despite being incoherent.
This is perhaps to be expected when typing imperative languages without Curry-
Howard (Martini 2015).

Conclusion

The Curry-Howard view divides languages by their approach to resource manage-
ment and condemns those languages which use perennial type systems alongside
manual memory management.

ATS Headers

fn bytearray_zero {n:int} (int(n)) : [l:addr] (bytes_v(l, n) | ptr(l))

fn bytearray_set
{l:addr}
{n:int}
{ m : int | m <= n }
(!bytes_v(l, n) | ptr(l), int(m), byte)

: void

fn bytearray_free {l:addr}{n:int} (bytes_v(l, n) | ptr(l)) : void

In ATS, ! means that the linear argument is not consumed.

3



References

Girard, Jean-Yves. 2011. The Blind Spot: Lectures on Logic. European Mathe-
matical Society.

Lafont, Y. 1988. “The Linear Abstract Machine.” Theoretical Computer Science
59 (1): 157–80. https://doi.org/https://doi.org/10.1016/0304-3975(88)90100-
4.

Martini, Simone. 2015. “Several Types of Types in Programming Languages.”
In 3rd International Conference on History and Philosophy of Computing
(HaPoC), AICT-487:216–27. History and Philosophy of Computing. Pisa,
Italy: Springer. https://doi.org/10.1007/978-3-319-47286-7_15.

4

https://doi.org/10.1016/0304-3975(88)90100-4
https://doi.org/10.1016/0304-3975(88)90100-4
https://doi.org/10.1007/978-3-319-47286-7_15

	Programming Languages
	Linear Types
	Perennial Type Systems
	Confused Type Systems

	Conclusion
	ATS Headers
	References

