
Manual Memory Management in Haskell

Vanessa McHale

As I have remarked in the past, simply having linear types in a language is
actually sufficient to prevent many memory errors. As far as I know, ATS is the
only language that implements anything like this, but I will be focusing on a
proposed Haskell extension in this example.

If you want to follow along with the example, you’ll have to download the
appropriate branch of the compiler from here.

{-# LANGUAGE GADTs #-}

import Foreign.Marshal.Alloc
import Foreign.Ptr
import Foreign.Storable

foreign import ccall unsafe "stdlib.h free" lfree :: Ptr a ->. IO ()

First we define ViewType which will help enforce safe memory management.
Note the special arrow ->. used for linear arguments.

data ViewType a = ViewType (Ptr a ->. IO ()) (Ptr a)

We will define a Storable instance and an example data type as follows:

data Point = Point Float Float
deriving (Show)

floatWidth :: Int
floatWidth = sizeOf (undefined :: Float)

instance Storable Point where
sizeOf _ = 2 * floatWidth
alignment _ = floatWidth
peek ptr = do

x <- peekByteOff ptr 0
y <- peekByteOff ptr floatWidth
pure (Point x y)

poke ptr (Point x y) =
pokeByteOff ptr 0 x >>
pokeByteOff ptr floatWidth y

1

https://twitter.com/pasiphae_goals/status/989971802922340352
https://github.com/tweag/ghc/tree/linear-types


The following manually modifies the second Float contained in a Point. It takes
a ViewType and thus is safe.

pokeY :: Float -> ViewType Point -> IO ()
pokeY x (ViewType _ ptr) = pokeByteOff ptr floatWidth x

safePeek :: Storable a => ViewType a -> IO a
safePeek (ViewType _ ptr) = peek ptr

We then need a safe way to convert a value to a ViewType:

safeAlloc :: Storable a => a -> IO (ViewType a)
safeAlloc x = do

ptr <- malloc
poke ptr x
pure $ ViewType lfree ptr

Finally, we need a way to safely free values, viz.

dealloc :: Storable a => ViewType a ->. IO ()
dealloc (ViewType f ptr) = f ptr

We write a small program to test all of this:

main :: IO ()
main = do

let x = Point 1.0 3.0
vptr <- safeAlloc x
pokeY 2.0 vptr
x' <- safePeek vptr
dealloc vptr
print x'

Thus, while Haskell does not give us the full safety (or ease) of Rust, we can
choose to expose a limited API for manual memory management, within which
all manipulations are memory safe.

2


